Dijkstra's Algorithm for finding the shortest route

Collapse
X
 
  • Time
  • Show
Clear All
new posts
  • Glenton
    Recognized Expert Contributor
    • Nov 2008
    • 391

    Dijkstra's Algorithm for finding the shortest route

    Hi All

    Here is a very simple little class for finding a shortest route on a network, following Dijkstra's Algorithm:

    Code:
    #!/usr/bin/env python
    #This is meant to solve a maze with Dijkstra's algorithm
    from numpy import inf
    from copy import copy
    
    class Graph(object):
        """A graph object that has a set of singly connected,weighted,
        directed edges and a set of ordered pairs. Can be changed into
        a connection matrix. Vertices are [0,1,...,n], and edges are 
        [[1,2,3],[2,1,1],...] where the first means 1 connected to 2 
        with weight 3, and the second means 2 connected to 1 with 
        weight 1."""
        
        def __init__(self,vertices,edges):
            self.vertices=vertices
            self.size=len(self.vertices)
            self.edges=edges
            self.makematrix()
        
        def makematrix(self):
            "creates connection matrix"
            self.matrix=[]
            for i in range(self.size):
                self.matrix.append([])
                for j in range(self.size):
                    self.matrix[i].append(inf)
            for edge in self.edges:
                self.matrix[edge[0]][edge[1]]=edge[2]
        
        def dijkstra(self,startvertex,endvertex):
            #set distances
            self.distance=[]
            self.route=[]
            for i in range(self.size):
                self.distance.append(inf)
                self.route.append([])
            self.distance[startvertex]=0
            self.route[startvertex]=[startvertex,]
            #set visited
            self.visited=[]
            self.current=startvertex
            while self.current<>None:
                self.checkunvisited()
                if endvertex in self.visited: break
            return self.distance[endvertex],self.route[endvertex]
        
        def checkunvisited(self):
            basedist=self.distance[self.current]
            self.visited.append(self.current)
            for vertex,dist in enumerate(self.matrix[self.current]):
                if vertex in self.visited: continue #only check unvisited
                #set the distance to the new distance
                if basedist+dist<self.distance[vertex]:
                    self.distance[vertex]=basedist+dist
                    self.route[vertex]=copy(self.route[self.current])
                    self.route[vertex].append(vertex)
            #set next current node as one with smallest distance from initial
            self.current=None
            mindist=inf
            for vertex,dist in enumerate(self.distance):
                if vertex in self.visited: continue
                if dist<mindist:
                    mindist=dist
                    self.current=vertex
            
        
        
    def main():
        #This solves the maze in the wikipedia article on Dijkstra's algorithm
        #Note that the vertices are numbered modulo 6, so 6 is called 0 here
        V=range(6)
        E=[[1,2,7],[1,3,9],[1,0,14],[2,1,7],[2,3,10],[2,4,15],[3,1,9],[3,2,10],
        [3,4,11],[3,0,2],[4,2,15],[4,3,11],[4,5,6],[5,4,6],[5,0,9],[0,1,14],
        [0,3,2],[0,5,9]]
        m=Graph(V,E)
        print "size of graph is", m.size
        
        print "distance and best route is", m.dijkstra(1,5)
        
        
    
    if __name__=="__main__": main()
    The main here is just an example, implementing the network shown in the wikipedia article. To use it, you simply need to get your network arranged into a list of vertices (0,1,...,n-1), and your edges into a list of coordinates of the form [a,b,d], where the edge is from a to b with weight d. If you want undirected, you simply need to add [b,a,d]. If you want unweighted you need to just set d=1.

    I've been planning the design of some mazes for the local science centre, which is why I've got this! Any improvements/comments are welcome.
  • Glenton
    Recognized Expert Contributor
    • Nov 2008
    • 391

    #2
    Graph Class

    Hi

    So here I've beefed up the Graph class a little bit.
    - The main addition is the implementation of Kruskal's algorithm for finding minimum spanning trees. The neat part is that it uses Dijkstra's algorithm to determine whether two points are connected (at least I found it neat).
    - Other improvements are the ability to add vertices and edges to a graph on the fly, and to input a graph by its matrix, rather than by its vertices and edges sets.

    Code:
    #!/usr/bin/env python
    #This is meant to solve a maze with Dijkstra's algorithm
    from numpy import inf
    from copy import copy
    from bisect import bisect_left
    
    class Graph(object):
        """A graph object that has a set of singly connected,weighted,
        directed edges and a set of ordered pairs. Can be changed into
        a connection matrix. Vertices are [0,1,...,n], and edges are 
        [[1,2,3],[2,1,1],...] where the first means 1 connected to 2 
        with weight 3, and the second means 2 connected to 1 with 
        weight 1."""
     
        def __init__(self,vertices=[],edges=[]):
            self.vertices=vertices
            self.order=len(self.vertices)
            self.edges=edges
            self.size=len(edges)
            self.makematrix()
    
        def addvertice(self,vertice):
            self.vertices.append(vertice)
            self.order=len(self.vertices)
            self.makematrix()
            
        def addvertices(self,vertices):
            self.vertices+=vertices
            self.order=len(self.vertices)
            self.makematrix()
        def addedge(self,edge):
            self.edges.append(edge)
            self.size=len(self.edges)
            self.makematrix()
    		
        def addedges(self,edges):
            self.edges+=edges
            self.size=len(self.edges)
            self.makematrix()
            
        def orderedges(self):
            E=[]
            eo=[]
            for e in self.edges:
                n=bisect_left(eo,e[2])
                eo.insert(n,e[2])
                E.insert(n,e)
            self.edges=E
        def makematrix(self):
            "creates connection matrix"
            self.matrix=[]
            for i in range(self.order):
                self.matrix.append([])
                for j in range(self.order):
                    self.matrix[i].append(inf)
            for edge in self.edges:
                self.matrix[edge[0]][edge[1]]=edge[2]
     
        def dijkstra(self,startvertex,endvertex):
            #set distances
            self.distance=[]
            self.route=[]
            for i in range(self.order):
                self.distance.append(inf)
                self.route.append([])
            self.distance[startvertex]=0
            self.route[startvertex]=[startvertex,]
            #set visited
            self.visited=[]
            self.current=startvertex
            while self.current<>None:
                self.checkunvisited()
                if endvertex in self.visited: break
            return self.distance[endvertex],self.route[endvertex]
     
        def checkunvisited(self):
            basedist=self.distance[self.current]
            self.visited.append(self.current)
            for vertex,dist in enumerate(self.matrix[self.current]):
                if vertex in self.visited: continue #only check unvisited
                #set the distance to the new distance
                if basedist+dist<self.distance[vertex]:
                    self.distance[vertex]=basedist+dist
                    self.route[vertex]=copy(self.route[self.current])
                    self.route[vertex].append(vertex)
            #set next current node as one with smallest distance from initial
            self.current=None
            mindist=inf
            for vertex,dist in enumerate(self.distance):
                if vertex in self.visited: continue
                if dist<mindist:
                    mindist=dist
                    self.current=vertex
     
     
        def kruskal(self):
            self.orderedges()
            E=self.edges
            T=Graph(self.vertices,[])
            for e in E:
                if T.dijkstra(e[0],e[1])[0]==inf:
                    T.addedge(e)
                    T.addedge([e[1],e[0],e[2]])
                if T.order-1==T.size/2:break
            return T
        def weight(self):
            return sum([e[2] for e in self.edges])
        def setmatrix(self,matrix):
            E=[]
            V=range(len(matrix))
            for i,row in enumerate(matrix):
                for j,col in enumerate(row):
                    if col<inf:
                        E.append([i,j,col])
            self.__init__(V,E)
            
    def main():
        #This solves the maze in the wikipedia article on Dijkstra's algorithm
        #Note that the vertices are numbered modulo 6, so 6 is called 0 here
        V=range(6)
        E=[[1,2,7],[1,3,9],[1,0,14],[2,1,7],[2,3,10],[2,4,15],[3,1,9],[3,2,10],
        [3,4,11],[3,0,2],[4,2,15],[4,3,11],[5,4,6],[5,0,9],[0,1,14],
        [0,3,2],[0,5,9],[4,5,6]]
        m=Graph(V,E)
        print "order of graph is", m.order
        print "distance and best route is", m.dijkstra(1,5)
        print "edges", m.edges
        m.orderedges()
        print "ordered edges", m.edges
        T=m.kruskal()
        print "Minimum spanning tree:"
        print "Vertices",T.vertices
        print "Edges",T.edges
        print "Matrix:"
        print T.matrix
        print "Weight",T.weight()/2
        M=m.matrix
        m2=Graph()
        m2.setmatrix(M)
        
        M=[[inf,16,12,21,inf,inf,inf],
            [16,inf,inf,17,20,inf,inf],
            [12,inf,inf,28,inf,31,inf],
            [21,17,28,inf,18,19,23],
            [inf,20,inf,18,inf,inf,11],
            [inf,inf,31,19,inf,inf,27],
            [inf,inf,inf,23,11,27,inf]]
        G=Graph()
        G.setmatrix(M)
        T=G.kruskal()
        print "Savings is",G.weight()/2-T.weight()/2
        
    if __name__=="__main__": main()

    Comment

    Working...