HI , WOULD U PLZ HELP ME IN GETTING CODES IN C AND C++ FOR SOLVING THE FOLLOWING NUMERICAL METHODS to find an approximate root:
BISECTION METHOD stoppingconditi on F(Pi)<tolerance or Ibi-aiI<tolerance
SECANT METHOD NEW APPROXIMATE ROOTxi+1=Xi+1-{f(xi)(xi-1-xi)/{f(xi-1)-f(xi) stopping conditionF(xi+1 )<tolerance or {xi+1-xi}/{xi+1
FALSE POSITION METHOD Xr=X-{{F(Xu)(Xu-Xl)}/f(Xu)-f(Xl)}STOPPING CONDITION {Xrnew-Xrold}/Xrnew<tolerance or I{Xrnew-Xrold}<toleranc e.
SUCCESSIVE APPROXIMATION METHOD Xi+1=g(xi),rule to
converge -1<differentiono f g(x)<1 stopping condition lXi+1-Xil<toleranceor
f(xi)<tolerance
MODIFIED SUCCESSIVE APPROXIMATION
GAUSS ELIMINATION
GAUSS JORDAN STEPS :choose the pivot with max absolute number in such acolumn
pivot column elements will be copied as itis, pivot row elements changes to -element/pivot other elemnts apply rectangular rule
GAUSS JORDAN FOR INTEGRALMATRIX steps:choose the pivot with max absolute number in such acolumn
pivot column elements will be copied as itis, pivot row elements changes to -element ,other elemnts apply rectangular rule
BISECTION METHOD stoppingconditi on F(Pi)<tolerance or Ibi-aiI<tolerance
SECANT METHOD NEW APPROXIMATE ROOTxi+1=Xi+1-{f(xi)(xi-1-xi)/{f(xi-1)-f(xi) stopping conditionF(xi+1 )<tolerance or {xi+1-xi}/{xi+1
FALSE POSITION METHOD Xr=X-{{F(Xu)(Xu-Xl)}/f(Xu)-f(Xl)}STOPPING CONDITION {Xrnew-Xrold}/Xrnew<tolerance or I{Xrnew-Xrold}<toleranc e.
SUCCESSIVE APPROXIMATION METHOD Xi+1=g(xi),rule to
converge -1<differentiono f g(x)<1 stopping condition lXi+1-Xil<toleranceor
f(xi)<tolerance
MODIFIED SUCCESSIVE APPROXIMATION
GAUSS ELIMINATION
GAUSS JORDAN STEPS :choose the pivot with max absolute number in such acolumn
pivot column elements will be copied as itis, pivot row elements changes to -element/pivot other elemnts apply rectangular rule
GAUSS JORDAN FOR INTEGRALMATRIX steps:choose the pivot with max absolute number in such acolumn
pivot column elements will be copied as itis, pivot row elements changes to -element ,other elemnts apply rectangular rule
Comment